Radial Basis Functions, Discrete Differences, and Bell-Shaped Bases
نویسندگان
چکیده
In this paper, we introduce the notion of a normalized radial basis function. In the univariate case, taking these basis functions in combinations determined by certain discrete differences leads to the B-spline basis. In the bivariate case, these combinations lead to a generalization of the B-spline basis to the surface case. Subdivision rules for the resulting basis functions can easily be derived.
منابع مشابه
Numerical Simulation of 1D Linear Telegraph Equation With Variable Coefficients Using Meshless Local Radial Point Interpolation (MLRPI)
In the current work, we implement the meshless local radial point interpolation (MLRPI) method to find numerical solution of one-dimensional linear telegraph equations with variable coefficients. The MLRPI method, as a meshless technique, does not require any background integration cells and all integrations are carried out locally over small quadrature domains of regular shapes, such as lines ...
متن کاملApproximation of a Fuzzy Function by Using Radial Basis Functions Interpolation
In the present paper, Radial Basis Function interpolations are applied to approximate a fuzzy function $tilde{f}:Rrightarrow mathcal{F}(R)$, on a discrete point set $X={x_1,x_2,ldots,x_n}$, by a fuzzy-valued function $tilde{S}$. RBFs are based on linear combinations of terms which include a single univariate function. Applying RBF to approximate a fuzzy function, a linear system wil...
متن کاملNumerical Solution of Two-Dimensional Hyperbolic Equations with Nonlocal Integral Conditions Using Radial Basis Functions
This paper proposes a numerical method to the two-dimensional hyperbolic equations with nonlocal integral conditions. The nonlocal integral equation is of major challenge in the frame work of the numerical solutions of PDEs. The method benefits from collocation radial basis function method, the generalized thin plate splines radial basis functions are used.Therefore, it does not require any str...
متن کاملSymbolic Computation for Moments and Filter Coefficients of Scaling Functions
Algebraic relations between discrete and continuous moments of scaling functions are investigated based on the construction of Bell polynomials. We introduce families of scaling functions which are parametrized by moments. Filter coefficients of scaling functions and wavelets are computed with computer algebra methods (in particular Gröbner bases) using relations between moments. Moreover, we p...
متن کاملThe method of radial basis functions for the solution of nonlinear Fredholm integral equations system.
In this paper, An effective and simple numerical method is proposed for solving systems of integral equations using radial basis functions (RBFs). We present an algorithm based on interpolation by radial basis functions including multiquadratics (MQs), using Legendre-Gauss-Lobatto nodes and weights. Also a theorem is proved for convergence of the algorithm. Some numerical examples are presented...
متن کامل